Calculus - Integration - Reverse Chain Rule.
Test Yourself 1.
The questions on this page focus on: |
1. Basic functions - indefinite integrals. |
2. Basic functions - definite integrals. |
3. More advanced questions. |
They do not obtain solutions using logarithms. You can access questions using the reverse chain rule involving logarithms elsewhere. |
Use the Reverse Chain Rule approach involving substitution to integrate and/or evaluate the following :
Basic functions - indefinite. | 1. ![]() using the substitution u = x4 + 42. |
2. ![]() using the substitution u = x3 + x2 - 8. |
3. ![]() using the substitution u = x2 +x + 2. |
4. ![]() using the substitution u = x2 - 1 |
|
5. ![]() |
6. ![]() |
|
7. ![]() | 8. ![]() |
|
Basic functions - definite | 9. ![]() |
10. ![]() |
11.
![]() Answer.0. |
12. ![]() Answer.10/21. |
|
13. Evaluate .
Hint.Use the substitution u = 2 + 2x - x2. |
14. ![]() Answer.1. |
|
15. If ![]()
|
||
16. Find the equation for x in terms of t if ![]() when t = 0, x = 10. (Hint: use the substitution u = t2 - 2t + 4). |